Matematika

Pertanyaan

prove the following identity :
1.sin alpha cos (90°- alpha) +cos alpha sin (90°- alpha) = 1
2. tan² Alpha + 1 = sec² alpha ; ctg² alpha + 1 = cosec
3. tan (90° - alpha) + cos alpha sin (90° - alpha) ctg alpha = 2
4. tg²alpha - sin² alpha = tg² alpha x sin² alpha
5. cos⁴ alpha (1 + tg⁴ alpha) = 1 - 2 sin² alpha cos² alpha

1 Jawaban

  • [tex]
    \text{No. 1}\\
    \sin{\alpha}\cos{(90\degree-\alpha)}+\cos{\alpha}\sin{(90\degree-\alpha)}=1\\
    \text{Proof:}\\
    \text{We know that}\\
    \sin{(90\degree-\alpha)}=\cos{\alpha}\\
    \cos{(90\degree-\alpha)}=\sin{\alpha}\\
    \text{also, we have a trigonometric identity}\\
    \sin^2{\alpha}+\cos^2{\alpha}=1\\
    \text{So that, we conclude that}\\
    \sin{\alpha}\cos{(90\degree-\alpha)}+\cos{\alpha}\sin{(90\degree-\alpha)}\\
    =\sin{\alpha}\sin{\alpha}+\cos{\alpha}\cos{\alpha}\\
    =\sin^2{\alpha}+\cos^2{\alpha}\\
    =1\\
    \text{Q.E.D.}\\
    \\
    \text{No. 2}\\
    \text{The proof is actually quiet easy}\\
    \text{From trigonometric identity, we know that}\\
    \sin^2{\alpha}+\cos^2{\alpha}=1\\
    \text{Devide both sides with }\cos^2{\alpha}\text{ then we have}\\
    \frac{\sin^2{\alpha}}{\cos^2{\alpha}}+\frac{\cos^2{\alpha}}{\cos^2{\alpha}}=\frac{1}{\cos^2{\alpha}}\\
    \Leftrightarrow \tan^2{\alpha}+1=\sec^2{\alpha}\\
    \text{Q.E.D}\\
    \\
    \text{Analogue with that, you can also prove that}\\
    \cot^2{\alpha}+1=\csc^2{\alpha}\\
    [/tex]

Pertanyaan Lainnya